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ABSTRACT 
Over the last few years, research scientists have proved that lithium-ion (Li-ion) battery can successfully compete 

as a rechargeable battery for green energy vehicles (electric vehicles or EVs, hybrid electric vehicles or HEVs) 

because of its higher energy density and lighter weight. However, capacity fade and battery pack failures remain 

a hindrance to its maximum utilisation. Failure not only leads in huge replacement cost but also prospective safety 

concerns such as short circuiting or overheating which may induce fire accidents and it becomes aggressive with 

ageing. That is why ageing estimation, health monitoring in terms of state of health (SoH) and end of life (EoL) 

estimation ability in battery equipped systems are of major concern. This paper critique novel research and 

development in the field of Li-ion battery ageing estimation and health monitoring. Various models, techniques 

and algorithms have been presented along with their pros and cons. The intent of this review and discussion is to 

prepare an inclusive perspective on progress and challenges in monitoring Li-ion battery ageing. 

 

KEYWORDS: 2 Li-ion battery, ageing, capacity fading, SoH, EVs, HEVs. 

I. INTRODUCTION 
Li-ion battery is a preferred choice of green energy vehicles and other automotive applications as an energy source 

[1]. As the applications are shifting from small-scale consumer electronics to dynamic energy/power application, 

the cycle life and performance of Li-ion battery are gradually becoming vital issues [2]. To create greater control 

over the performance, safety and cycle life of a Li-ion battery, smart monitoring for battery ageing is essential. It 

is specifically required for real-time applications (EVs, HEVs), where a larger power and energy demand along 

with an extended lifetime is critical [3,4]. Performance losses (e.g. power loss, energy loss, and capacity fade, 

etc.) over time is an existing problem, and extensive research has been focussing on understanding the ageing 

mechanism causing these losses. To promote researchers and their efforts to address the ageing issue, the United 

States Advanced Battery Council (USABC) has kept a goal of 10 years of calendar life of the battery for EVs and 

15 years for HEVs [5]. Degradation in the health of the battery is measured in terms of SoH. We can overcome 

the above problems by applying effective SoH monitoring, prognostic methods and algorithms [6,7]. Li-ion 

batteries used for EVs/HEVs require more attention due to challenging driving behaviour, variable environmental 

conditions, unbalanced battery cells, and self-discharging etc. [8,9]. All of the above challenges make Li-ion 

battery a unique case, and it needs aggressive efforts towards research and development of accurate health 

monitoring method and algorithm [10,11]. 

The main objective of this review paper is to analyse different approaches, methods, and algorithms for estimating 

ageing of Li-ion battery in terms of its state of health. The following points distinguish this review article from 

the other. 

 

 The authors try to collect and combine information about all models/methods and simulation approaches 

on a single platform. No other single review article provides all such information. 

 Also, this review article reviews some novel approaches e.g. magnetic field probing for monitoring of 

battery ageing. 

Section 2 defines ageing mechanism inside Li-ion battery, its origin and types. Section 3 defines different methods 

of estimating ageing with their benefits and drawbacks. Section 4 defines various software/tools used for battery 

http://www.ijesrt.com/


   ISSN: 2277-9655 

[Singh* et al., 6(7): July, 2017]   Impact Factor: 4.116 

IC™ Value: 3.00   CODEN: IJESS7 

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [23] 

diagnosis. Section 5 and 6 define discussion, conclusion and a proposed smart monitoring method for ageing 

respectively. 

II. AGEING MECHANISM INSIDE LI-ION BATTERY  
In 1912, G. N. Lewis initiated pioneering research work on the lithium battery. However, it took long to get a 

commercialised product. In 1991, the Sony Corporation commercialised the first Li-ion battery [12]. Figure 1a 

shows the different types of geometries of Li-ion battery [13] and Figure 1b shows the schematic representation 

of the working principle of the battery. During charging and discharging of the battery, Li+ ions move between   

(a)       (b)    

Figure 1. Li-ion battery (a) Different shapes of Li-ion batteries [13] and (b) Functioning. 

through the electrolyte, and this process is named as intercalation process [14,15]. After various cycles of charging 

and discharging, the intercalation process slows down which reflects the ageing of the battery. During a battery 

lifetime, its health tends to deteriorate slowly due to irreversible physical and chemical changes like internal 

impendence rise, gassing due to the secondary reaction, loss of active Li+ ions, internal temperature rise, electrolyte 

decomposition, loss of active electrode material and mechanical stress in electrodes [16,17], etc. Ageing 

phenomena occurring at electrodes (positive and negative) differ significantly. Therefore, these are explained 

individually [18]. Ageing indicators are summarised in the flowchart (Figure 2). 

Ageing process at negative electrode 

Carbons, lithium alloys, lithium titanate (Li4Ti5O12 or LTO) and chalcogenides are the most prominent insertion 

compounds that have been proposed as negative electrode (anode) materials for Li-ion batteries [19]. Solid 

electrolyte interphase (SEI) layer is a protective layer for rechargeable Li-ion battery, which forms at 

carbon/graphite electrode [20,21]. 

 
Figure 2. Ageing indicators chart 

The deposition of the SEI layer is an important part of the formation process of the battery during the first few 

charging cycles. SEI layer protects the electrolyte material from further depletion and charged anode from 

corrosion because electrolyte material reacts vigorously with the anode material during the initial charging of the 

battery [22,23]. However, there is an initial capacity loss in Li-ion battery during SEI layer formation due to 

irreversible loss of Li-ions which is approximately 7-10% of the rated battery capacity. The ageing process 

provokes some parasitic side reaction which results in further loss of active Li-ions and reflects more capacity 

loss. The thickness of the SEI layer is not homogeneous and rises with age. Figure 3 shows the ageing effect on 

negative electrode due to SEI layer. It shows how SEI pores block and gas bubbles. In the case of the graphene 

flakes, the edges are very rough and have many entries in which gas bubbles can be formed, between the graphite 
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mass and solid surface species [24]. The thickness of SEI layer rises battery internal impedance, reducing capacity 

and cycle life of the battery [25,26]. 

 
Figure 3. Schematic representation of ageing effect inside negative electrode [27]. 

Ageing process at positive electrode 

Lithium metal oxides like LiCoO2 (lithium cobalt oxide), LiNiO2 (lithium nickel oxide), LiMn2O4 (lithium 

manganese oxide), LiFePO4 (lithium iron phosphate), and advanced composite compounds like lithium nickel 

manganese cobalt oxide (LiNiMnCoO2 or NMC), lithium nickel cobalt aluminium oxide (LiNiCoAlO2 or NCA) 

are commonly used as positive electrode (cathode) materials in Li-ion batteries [28]. Cathode materials 

significantly affect both performances as well as calendar life and cycling of Li-ion batteries. Some current 

publications focus on the ageing of Li-ion batteries including cathode materials [29,30]. Mostly, capacity fading 

of positive electrode material can initiate from three processes: chemical decomposition/dissolution reaction, 

structural changes during cycling and surface film alteration. All these processes are described in Figure 4. 

 
Figure 4. Schematic representation of ageing effect inside positive electrode [29]. 

Similar to the negative electrode material, degradation of positive electrode material also depends on the cycling 

conditions and other operating conditions [31,32]. So finally, the major consequences observed on an aged 

positive electrode are wear of active mass, electrolyte degradation, electrolyte oxidation and the interaction 

between positive electrode element dissolved within the electrolyte [33,34]. Table 1 summarises the root causes 

of ageing phenomena in the Li-ion battery. 

Table 1. Summarised causes of Li-ion battery ageing. 

Ageing 

Indicator 
Cause 1 Cause 2 Cause 3 

Energy loss 

Active material 

transformation in 

inactive phase 

Ohmic polarisation SEI layer thickness growth 

Power loss Impedance growth   

Capacity fade 
Li-ion loss/Li-metal 

corrosion 

Side reaction (irreversible 

capacity loss) thermodynamically 

unstable lithiated carbon 

Li-metal plating, clogging 

micropores, reduction of 

active surface area, and Gas 

evolution 

Overpotential 
Non-homogeneous 

electrode surface 

Loss of active surface of 

electrodes 
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Self-discharge 

rate rise 
Separator degradation High SoC, and High temperature 

Oxidation at cathode 

against electrolyte at high 

temperature 

Beginning of Ageing inside Li-ion battery 

Two distinguished ageing situations are: 

• Calendar life on storage (i.e. on rest) 

• Cycle life while in-use (i.e. on cycling) 

Battery ageing occurs during storage due to self-discharge and impedance rise. It affects the calendar life of the 

battery. Ageing on storage mainly depends on storage time and storage conditions like temperature and state of 

charge (SoC). The ageing process during storage can be monitored by capacity fading, change in potential, 

internal resistance rise with SoC fade [35,36]. Sometimes, controlled charging/discharging cycles improve the 

capacity fade and recover a fraction of percentage faded capacity. 

On the other hand, cycling process usually damages the materials’ reversibility, the interaction between the 

electrolyte and active materials, that results in loss of cyclable Li-ions. Throughout cycling, one can measure the 

capacity fade, impedance rise and overpotential that influence the charge/discharge curves [37,38]. 

III. BATTERY AGEING ESTIMATION METHODS/MODELS 
The ability to diagnose and identify an ageing mechanism for the Li-ion battery is an important and most 

challenging goal. Methods for measuring its state of health mostly rely on the chemical and physical parameters 

like battery potential, in/out current, battery temperature and internal impedance etc. These methods are 

categorised as below: 

• Empirical and analytical modelling 

• Equivalent circuit modelling 

• Statistical model approach 

• Direct measurement methods 

• Electrochemical equation modelling 

• Invasive methods 

Empirical and analytical models 

An analytical method is based on previous experimental data and predicts the future behaviour of Li-ion batteries. 

Empirical models can be parameterised without a comprehensive understanding of the electrochemical cell 

structure. Empirical models have the advantage of simplicity. The main disadvantages of these models are the 

inaccuracy of the measurements and not being able to produce a prediction of internal cell behaviour. 

(a) Coulomb counting: V pop et al. [39] define Coulomb counting approach, in which the current flowing in and 

out of a battery is measured and integrated over time to determine the capacity of the battery. Capacity is an 

important parameter which decreases with ageing of the battery. Kong Soon Ng et al. [40], proposed enhanced 

coulomb counting method and evaluated the SoH as the ratio of the maximum releasable capacity (Qmax) to the 

rated capacity (Qrated) of the battery i.e. SoH = Qmax/Qrated. The SoH is calculated at two conditions: when the 

battery has been completely discharged and when the battery is fully charged. Larry W. Juang et al. [41] applied 

Coulomb counting method for the diagnosis of lithium iron phosphate battery. They have also included 

temperature parameter in the model for accuracy improvement. This approach can be used in BMS due to its 

simplicity and facility to apply with other methods. However, it requires a recalibration at regular intervals which 

is a difficult task in real time. 

(b) Electrochemical impedance spectroscopy (EIS): It is a very powerful way to gain health information about 

energy/power sources e.g. batteries, fuel cells, and supercapacitors [42]. After various battery cycles the 

composition of the electrodes’ active materials changes due to secondary reactions. Such change of material is 

reflected in battery impedance. The model can determine SoH as a function of the battery impedance. The 

electrochemical impedance of a battery characterises its dynamic behaviour. Impedance and battery ageing 

relationship vary with battery temperature, electrode polarisation, and corrosion of electrodes [43,44]. The 

advantage of EIS method is that it can be applied easily to different battery chemistries. At present this method 

has not been applied for on-line estimations e.g. in EVs and HEVs as it requires laboratory setup or significantly 

advanced hardware. 
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(c) Kalman filter (KF): The KF approach is an optimal state estimator for the linear systems. An extended Kalman 

filter (EKF) is used for the nonlinear systems. In References [45–47], Professor G. L. Plett represented a complete 

solution for Kalman filter and extended Kalman filter theory for battery state estimation. The KF and EKF 

techniques are model-based techniques, if a suitable battery model is available then it leads to higher accuracy. 

One disadvantage of this approach is the computational complexity. Lack of stability is another issue that comes 

with EKF approach when the system is nonlinear [48]. Another improved approach as sigma-point Kalman filter 

(SPKF) is given by G.L. Plett 

 
Figure 5. State of battery analysis using ANN and Fuzzy logic using five input parameters [56]. 

[49,50]. The sigma-points Kalman filter approach uses deterministic sampling points to capture the mean and the 

covariance of the estimated state vector. The mean and the covariance of the state vector can be estimated better 

by SPKF than by the EKF method. 

(d) Fuzzy logic and Artificial Neural Network (ANN): The fuzzy logic and ANN approaches provide a powerful 

method of modelling complex and non-linear physical systems. The fuzzy logic approach considers the battery as 

a black box and simply maps the input characteristics of the battery to its output characteristics. It does not include 

any physical description of the fundamental physicochemical processes [51,52]. This technique’s usage can help 

in using complete information about battery performance in order to derive its more accurate state of health 

estimation. The authors [53,54], applied the fuzzy logic methodology to Li-ion and Ni-MH batteries with EIS 

data. This data was pre-processed to bring out parameters that were used to develop precise fuzzy logic models 

for predicting SoH of the battery pack. The disadvantage of this approach is that it is not realistic for EVs and 

HEVs because the EIS data collection is not possible in a realistic environment. Neeta Khare et al. [55] show the 

capability of effective ANN system which is used to simulate the battery model integrated with the fuzzy logic 

approach. The author [56] shows that ANN training with five preferred parameters gives greater than 99% 

accuracy whereas the accuracy reduces with fewer number of parameters, leading to the conclusion that all five 

parameters are essential as shown in Figure 5. Mohammad Charkhgard et al. [57] applied a combination of neural 

network (NN) and EKF to estimate Li-ion battery states. The main drawbacks of NN approach are computational 

complexity and need to train a large amount of data. 

Equivalent circuit-based models 
These battery models are based on equivalent circuit theory and employ various methods to estimate model 

parameters [58–60]. For estimating battery ageing, model parameters are internal battery parameters like battery 

impedance, temperature, current, and voltage. These models can be implemented readily on low-cost 

microcontroller inside BMS. At present, the BMS for large Li-ion battery packs use the flavour of equivalent 

circuit-based models. The main issues of these models are the extraction of the parameters using experimental or 

manufacturer data and low accuracy as the battery becomes old. Liao Chenglin et al. [61] applied the following 

dynamic equivalent circuit model for LiFePO4 based Li-ion battery (Figure 6). 

 
Figure 6. An example of dynamic equivalent circuit model for Li-ion battery state analysis. 

(a) Support vector machine (SVM): The method of SVM was originally introduced by Vapnik [62]. SVM is a 

supervised machine learning algorithm which can be used for both classification and regression tasks. However, 

it is mostly used in classification problems. It performs classification tasks by constructing hyperplanes in a 

multidimensional space. Adnan Nuhic et al. [63] applied this method to build a battery health estimation model 

for EVs and HEVs. Yongqiang Chen et al. [64] proposed another method of weighted least squares support vector 

machine (WLS-SVM) to create the relationship of the state of charge with the cell potential, current and 

temperature. A good SVM regression model needs sufficient collection and tuning of empirical parameters, which 
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is a time-consuming process. Hong-Zhong Huang et al. [65] applied SVM to estimate remaining useful life (RUL) 

of a battery. One of the major limitations of SVM method is the inadequacy of probabilistic outputs. 

(b) Relevance Vector Machine (RVM): The RVM is a Bayesian form representing a general linear model of the 

SVM and applied for RUL prediction [66]. The fundamental idea is to build a probability density function (PDF) 

of the state, depending on all existing battery information. A comprehensive discussion of SVM and RVM is 

available in reference [67]. Bhaskar Saha et al. [68] have developed a model using battery internal parameters 

derived from an electrochemical model based upon RVM regression approach. The theory was that the internal 

parameters, e.g. electrolyte resistance and charge transfer resistance, would change steadily as battery 

deterioration proceeded and RVM model tracked the deterioration process accurately. The main advantage of 

RVM is that it is more generalised as compared to SVM and has low computational cost. The disadvantage of 

RVM is that the SVM parameters influence the results prediction. 

(c) Particle Filter (PF): Particle filters are a type of non-linear filters that combine Bayesian learning methods 

with sampling and can contribute good state estimation while maintaining the computational load controllable 

[69]. M. Dalal et al. [70] proposed a battery model based on PF. The authors used parameters like non-linear open 

circuit potential, internal temperature, current, cycle numbers. A statistical estimate of the system noise and the 

expected operational conditions are processed to provide estimated RUL. Its advantage is high accuracy in short-

term prediction and good adaptive ability but suffer from sample degeneracy. 

Statistical models 
Statistical models need an extensive data set. These models do not use any chemical or physical formulation and 

do not require any analytical information on the ageing mechanism [71]. 

Autoregressive Integrated Moving Average (ARIMA): This technique consists of two components: a disturbance 

component and a self-deterministic part. James D. Kozlowski et al. [72], represent the application of 

Autoregressive Moving Average (ARMA) for battery health estimation. Inputs are fed into a 2nd order ARMA 

model to calculate the battery prognostics. The precision of an ARMA model relies on representativeness and 

comprehensiveness of the past data used. So, it is not suitable for EVs applications, where past data is usually 

inadequate. Recursive model training and updating are essential for data, to make a realistic estimation. Yapeng 

Zhou et al. [73] applied ARIMA model along with empirical model decomposition (EMD) technique to predict 

the RUL of the Li-ion battery. The authors found that their model is more accurate than RVM method to predict 

battery ageing. 

Direct measurement (Non-invasive) methods 

Non-invasive methods use real-time sensors to measure the battery parameters. These battery parameters are 

related to SoC and SoH of the battery. Some of the non-invasive methods are: 

Quantum magnetism (Q-Mag) and magnetic field probing (MFP): A method developed by Cadex that measures 

the SoC of the battery named as Q-Mag. It uses the measurement of susceptibility or magnetic field [74]. The 

battery is polarised by an external source, and the resultant magnetic field is measured. Figure 7 shows a relation 

of SoC and magnetic field for LA battery [75]. Similarly, in Li-ion battery intercalation/deintercalation process 

alters electrode structure thereby, modifying its magnetic field susceptibility [76–79]. 

 
Figure 7. SoC estimation by magnetic field response courtesy of Cadex. 

The sensor developed by Magna-Lastic Devices Inc. USA measures the variation in the magnetic field due to 

change in SoC and also monitors the SoH of the Li-ion battery [80]. Neeta Khare et al. [81] used an approach 

based on induced electromotive force (emf) in a secondary coil as a measure of battery behaviour under an applied 

magnetic field. The variation in secondary coil voltage indicates the battery behaviour and its internal health when 

the battery is subjected to an applied AC magnetic field. The main advantages of this technique are low cost, non-

invasive, contactless and robust. 

Electrochemical models (physical models) 

Electrochemical models (physical models) provide complete information about battery parameters on 

performance and conditions e.g. voltage, current, temperature, electrolyte’s concentration, corrosion, etc. They 

need specific knowledge of the physical and chemical properties of the battery e.g. electrolyte volume, density 
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and porosity of the active materials [82]. The advantage of electrochemical models is that they include all internal 

battery behaviour parameters inherently for more precision. These models are too complex to use, and still, their 

implementation on an embedded system for BMS is questionable. Electrochemical models are further categorised 

as below: 

Phenomenological approach 

Physical models for battery health estimation started about twenty years ago vary in terms of complexity and 

computational requirements. Professor John Newman at the University of California published the first 

mathematical models capable of simulating the performance of Li-ion battery at the beginning of the 1990s. These 

models were based on well-proven electrochemical and thermodynamic concepts, and they described the 

processes that take place in the battery during operation. Few models based upon phenomenological approach are 

as follows: 

(a) Single-particle models (SPM): The SPM includes the effects of transport phenomena in a simple way. A model 

of electrolyte diffusion and ion intercalation inside a single electrode particle was developed [83]. In this model, 

a detailed distribution of local concentration and potential in solution phase are ignored to increase computational 

run time without compromising accuracy. The SPM is very simple and fast in the simulation. The only drawback 

is its validity for limited conditions, like thin electrodes and low rates. 

(b) Pseudo-two-dimensional models (P2D): The P2D model includes diffusion in the solid-phases and electrolyte 

as well as Butler-Volmer equation. A P2D based model was developed on concentrated solution theory to define 

the internal behaviour of a Li-ion battery consisting of porous electrodes with current collectors and a separator 

[84]. The model is represented by coupled nonlinear partial differential equations (PDEs) that may take from 

seconds to minutes to simulate and is based on the theories of electrochemistry, transport phenomena, and 

thermodynamics [85]. Ali Jokar et al. [86] provide an exclusive review on electrochemical modelling approach 

(SPM and P2D). 

(c) Multiphysics Models: This is a complex approach used in system modelling. It includes multiscale, multidi-

mensional and multiphysics electrochemical coupled models. Generally, these models accurately define all of the 

essential phenomena that take place during the operation of an electrochemical multiphysics system like battery 

[87–89]. A 2D thermal-electrochemical coupled model is presented by Long Cai et al. [90] for Li-ion battery that 

considers the effects of local heat generation. This paper also covers the battery discharging performance at 

different operating temperatures. 

Atomistic and molecular approach 

The approach uses essential properties of electrodes and electrolyte materials. These models are harder to design 

and recognise. Models based on atomistic and molecular approach have been developed and are as follows: 

(a) Kinetic Monte Carlo (KMC): It is a random methodology used to analyse the discharge behaviour of Li+ ions 

during the process of intercalation. KMC based models have been applied in [91,92] to simulate the diffusion of 

Li+ ions within an electrode to understand how different crystal structures affect Li+ ions mobility. It is also used 

to predict thermodynamic properties of the material [93]. Ravi N. Methekar et al. [94] applied KMC method to 

simulate the parasitic growth of the SEI layer over the surface of the electrode particle to analyse the capacity 

fading mechanism. The authors found that at slow discharge rate KMC calculations become expensive. 

(b) Density functional theory (DFT): DFT calculations can be used to achieve analytical result about the structure 

and function of the battery electrode materials. Ken Tasaki et al. [95] used DFT-based calculations to define the 

electronic structure and lattice properties of graphite within LiC6 electrode. Ki Chul Kim et al. [96] applied DFT 

calculations to examine the effect of lithium binding and Quinone property for positive electrode stability. One of 

the greatest challenges of physical models is there solving and convergence complexity. 

Invasive methods 

In situ investigations of Li-ion batteries for battery ageing estimation have been proved to be extremely insightful 

but have some challenges like the electrochemical cell must be completely compatible with testing method 

conditions. In situ techniques are very attractive because they provide continuous data during electrochemical 

cycling and avoid the problems of relaxation and contamination. Significant progress has been made with more 

advanced, new in situ techniques in the past few years [97,98]. 

The functioning of batteries is a complicated electrochemical system where various physical and chemical 

processes occur e.g. change in volume, phase transitions, parasitic side reactions, etc. These processes can be 

monitored by in operando and in situ measurements and therefore allow to link these processes directly to the 

electrochemical response of the battery. In operando process represents a special case of in situ research, where 

the battery is in operation, i.e. is being discharged during the process, allowing measurements of non-equilibrium 

states. Herein, a comprehensive overview of in situ methods for studying and diagnosing Li-ion battery’s ageing 

is provided which emphasises on recent developments and stated experimental highlights. 

X-ray techniques 
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(a) X-ray diffraction (XRD): In XRD method, a scattering of X-rays due to sporadically spaced atoms produces a 

diffraction pattern. This pattern helps in collecting information about crystal’s structure. During battery diagnosis, 

XRD technique is used to observe the structural evolution in an electrode as the electrochemical processes take 

place. To conduct XRD measurements during the battery operation, an X-ray translucent window needs 

incorporating into the design. This window allows the X-rays to reach the electrodes under investigation [99]. 

This setup allows incident X-ray beam to penetrate and is also vulnerable to air and moisture contamination. Misra 

et al. [100] applied XRD on the delithiation mechanisms in Si nanowires and also analysed parameters which 

reduce the cycle life performance of Si nanowire electrodes. Figure 8 shows a general view for in situ X-ray 

techniques. XRD method is used for post-mortem analysis of the battery. 

 
Figure 8. A general view for in situ X-ray techniques. 

(b) X-ray absorption spectroscopy: This technique helps in analysing the structure and geometry of material, 

associated with the redox reactions that take place in batteries. Alexander W. Brownrigg et al. [101] applied XAS 

technique to analysis cathode material for Li-ion battery. Authors observed the stability and other ageing 

parameters for the Li2FeSiO4 cathode material. P.T. Kristiansen et al. [102] employ XAS to study redox behaviour 

of Li2MnSiO4 cathode material during cycling for better capacity performance. 

Some advanced forms of X-ray microscopy are also used to investigate Li-ion batteries e.g. TXM [103] and X-

ray tomographic microscopy [104]. These techniques are used at nanometre scale visualisation. 

Magnetic resonance methods 

(a) Nuclear magnetic resonance spectroscopy (NMR): This method is based on the nuclear element’s magnetic 

resonance properties. NMR is an essential tool to probe the structural changes that occur in electrode materials. 

Sample electrode of the battery is placed inside NMR tube, and a strong static magnetic field is applied. Battery 

diagnosis setup is shown in figure 9. Minor variations in the monitored resonance frequencies provide elaborative 

information on the electronic environment around the sample electrode’s nucleus and yield information about the 

lithium environment and electrochemically induced structural changes of electrodes during or after cycling [105]. 

The metal parts normally present in a battery such as casings, current collectors and metallic coatings in cells, 

shield the electrodes from the applied field. Plastic and cylindrical cells have been successfully employed to avoid 

this problem [106]. NMR has shown to be an adequate technique to investigate anode, cathode and electrolyte 

materials for 7Li [107,108]. Rangeet Bhattacharyya et al. [109] were able to identify the mass of dendrite/moss 

lithium micro-scale structure developed during cycling process and monitoring lithium dendrite formation using 

NMR. Rémi Castaing et al. [110] applied NMR spectroscopy for SEI layer interphase for aged Li-ion battery and 

analyse parameters for capacity loss. 

 
Figure 9. NMR spectroscopy setup for in-situ battery diagnosis (modified from [105]). 

Nowadays, several in situ NMR studies have been conducted, measuring Li-ion concentration profiles [111,112]. 

S. Chandrashekar et al. [113], also measured a number of deposited Li microstructure during electrochemical 

cycling. 

(b) Mössbauer spectroscopy (MS): Mössbauer spectroscopy is a nuclear interaction method that works as a 

function of gamma rays. Theoretically, several isotopes relevant for Li-ion batteries can be investigated by MS, 

but most research has been restricted to 57Fe and 119Sn Mössbauer experiments. The authors [114,115] used MS 

technique for in-situ operando studies of Li-ion batteries for the characterisation of electrode materials and the 

analysis of electrochemical reactions.  
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Probe microscopy 

Atomic force microscopy (AFM): The AFM is a suitable tool for Li-ion batteries ageing analysis because high-

resolution images of the electrode (cathode) surface are obtainable [116]. This approach is based on the deflection 

of a cantilever with a high-pitched tip to examine surfaces. By scanning the interface between the electrode and 

the liquid electrolyte, a distribution pattern is obtained. Therefore, changes in volume and SEI formation during 

cycling can be visualised [117]. The critical challenge of an in situ AFM design is the access of the cantilever into 

the battery. All measurements are often performed under inert atmosphere inside a glove-box to avoid 

contamination. A detailed discussion about in situ AFM cells can be found in [118]. Jonghyun Park et al. [119] 

proposed a design in which the Li metal auxiliary electrode was used inside the electrochemical cell and the cell 

contained two electrodes as shown in (figure 10). Similar to AFM, researchers also used other adopted forms of 

probe microscopy for advanced study of battery ageing like electrochemical strain microscopy (ESM) [120] and 

scanning ion conductance microscopy (SICM) [121]. 

 
Figure 10. A detail view of AFM technique (modified from [119]). 

Optical methods 

(a) Raman spectroscopy: Raman spectroscopy is a non-destructive characterisation technique that is able to detect 

structural variations on the atomic level. This method is founded on inelastic scattering phenomenon of 

monochromatic light when it interacts with the sample. An optical pathway is to be created for laser light to react 

with the electrode. Usually, an opening window with a piece of thin glass in the outer casing is designed in the in 

situ cell as shown in figure 11a, by that the laser light may go through. By Raman spectroscopy, researchers can 

analyse different crystalline information and structural changes of electrodes during the cycling process. An 

extensive publication on in situ Raman spectroscopy in electrochemical research can be found in [122]. 

 
 (a) (b) 

Figure 11. Raman Spectroscopy details for in situ electrochemical cell (a) Schematic view (modified from [122]) and (b) 

Result for in situ Raman spectra of ZFO-C electrode collected at different stages of the discharge and charge cycle in 

LiPF6 in 1:1 EC/DMC electrolyte [123]. 

Laura Cabo-Fernandez et al. [123] applied Raman spectroscopy to study the SEI formation and evolution for Li-

ion battery during its cycling process, and the result is shown in figure 11b. It represents Raman shifts/peaks 

associated with electrolyte. These peaks represent the lithiation/delithiation process during charging and 

discharging profile. 

(b) Fourier transform infrared spectroscopy (FTIR): This method is based on infrared light absorption instead of 

scattering and is similar to Raman Spectroscopy. Its drawback is surface’s sensitiveness. Therefore, this is 

commonly applied to study the interfacial reactions between a working electrode and the electrolyte in the 

reflective mode. It is also used in identifying gas products formed during the reduction or oxidation of the 

electrolyte in the transmission mode. Another drawback is positioning the IR-window closest possible to the 

working electrode in order to limit the absorption of light by the electrolyte between the electrode and window. 

FTIR research has been described extensively for different battery setups in [124,125]. Some advantages of optical 

in situ methods are required low-cost instruments, equipment and easy data processing. 

Electron microscopy 
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(a) Scanning electron microscopy (SEM): In SEM technique, an electron beam focuses on a specimen and either 

the secondary electrons or the back-scattered electrons emitted by the available atoms get detected (figure 12a) 

[126]. 

 
 (a) (b) 

Figure 12. SEM microscopy details (a) Schematic view of SEM microscopy (modified from [126]) and 

(b) SEM images showing the progression of particle fracture and fragmentation as a function of cycle 

[127]. 

The technique offers an excellent spatial resolution to investigate morphological changes during battery operation 

such as electrode volume expansion/contraction, electrode cracking, etc. In [127], Dean J. Miller et al. applied 

SEM method to diagnose Li-ion batteries and results are shown in figure 12b. The figure shows the particle 

fracture progress after discharging/charging cycles. 

(b) Transmission electron microscopy (TEM): This is similar to SEM. With TEM, electrons that transmitted 

through the electrodes and electrolyte are detected and build a nanoscale image. So, only nanoscale batteries can 

be investigated for the structural changes that can be monitored during battery operation (Figure 13). 

 
Figure 13. Schematic view of TEM methodology (modified from [128]). 

Raymond R. Unocic et al. [128] applied TEM in situ method for SEI formation and evaluation for a liquid Li cell. 

The authors observed the dynamic self-healing nature of the SEI layer with changes in cell potential. Patricia 

Abellan et al. [129] used in situ TEM for analysing degradation mechanism inside electrolyte solution for Li-ion 

battery. 

(c) Electron holography: In electron holography, the sample is exposed to an electron beam whose phase will be 

modulated by the electrostatic potential and magnetic field across the sample [130]. The signal coming from the 

sample and a reference signal interfere with each other, which results in a hologram (interference fringe pattern). 

The authors [131–133] applied this electron holography technique to map the electric potential distribution 

through the cathode/solid electrolyte interface during charging/discharging process as well as tracked anode side 

reactions. 

Neutron-based methods 

(a) Neutron reflectometry: Neutron reflectometry inculpates directing a highly focused neutron beam onto a 

surface and observing the intensity of the reflected radiation in terms of neutron wavelength or function of angle. 

It permits the thin film growth monitoring such as SEI formation and volumetric changes that battery operation 

induced [134,135]. In [134] Jeanette E. Owejan et al. determine the depth profile of the scattering length density 

(SLD) by adjusting the strength of reflected neutrons. Figure 14 shows the SLD as a function of depth for the SEI 

deposited on Cu. It also indicates the growth of the SEI thickness. As a result of neutron’s large penetration depth, 

conventional coin cells and commercial cylindrical batteries can be used for in situ reflectometry research. 
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Figure 14. Neutron reflectometry for measurement of SEI thickness in terms of SLD [134]. 

(b) Neutron depth profiling (NDP): This method is based on bombarding the sample with thermal neutrons of 

energy about 25 mev. Lithium material, which has a high neutron absorption cross-section, absorbed these thermal 

neutrons resulting in alpha and triton particles emission. The authors [136,137] used in situ NDP for Li-ion 

batteries diagnosis. The study illustrates NDP as a powerful source to probe the concentration of lithium ions 

throughout thin film battery. 

(c) Neutron diffraction: This technique is similar to XRD. Its disadvantage is the weaker interaction of neutrons, 

so larger penetration depth is required for better results. Another disadvantage of this technique is this being very 

sensitive towards the hydrogen existing in liquid electrolytes and the separators of commercial batteries giving 

rise to large background signals from the neutrons which are incoherently scattered [138]. Prabeer Barpanda et 

al. [139] used neutron diffraction technique for cathode material study. 

IV. SIMULATION TOOLS USED FOR MODELLING 
The main simulation tools used for simulating the Li-ion batteries ageing models are: 

• DUALFOIL software uses Newman’s based subroutine [140]. Which uses a finite difference method 

(FDM) to simulate electrochemical systems for more than four decades. It is freely available open source 

tool based on FORTRAN code. 

• Microsoft Excel and MATLAB (Simulink and Simscape) software are used to simulate the empirical or 

analytical based models [141]. Maple, Mathematica, and Mathcad tools are also used [142,143]. 

• COMSOL Multiphysics and Battery Design Studio [144,145] software implement the FDM/FEM in an 

easy to use interface and include a package that implements the P2D battery model and Multiphysics model. 

V. DISCUSSION 
From electrochemical to direct estimations, different types of models/methods present to monitor the level of 

battery ageing and each of them has its pros and cons. 

Methods comparison: Direct measurements do not require battery hypothesis since this is a direct measurement 

based estimations. Methods such as electrochemical models and equivalent circuit models perform well under the 

limited range but cannot be extended directly to other batteries’ technology. In addition, both equivalent circuit-

based models and electrochemical-based models rely on the accuracy of models. Direct measurement methods 

also miss electrochemical information about battery ageing due to the absence of appropriate probing. With the 

constantly improving technologies and new research findings, innovative technologies are frequently coming in 

the market to improve the probing methods. As yet, Electrochemical and equivalent circuit models fail to adopt 

the new technology with significant changes in the base model. However, physical and electrochemical models 

are dominant tools to recognise the ageing phenomenon under the limited range. 

On the other hand, statistical models are easily adaptable to different batteries’ chemistry, and they provide ageing 

results in real time. However, these models require a significant amount of data for an estimation of battery ageing 

which is a time-consuming process to collect data for entire battery life. In situ/invasive methods provide deep 

analysis about Li-ion battery’s electrochemical behaviour during its cycle life. However, these techniques require 

complicated and expensive laboratory setup. 

In general, there is a large requirement of a non-invasive, on-line method that can provide direct measurements 

for battery ageing diagnosis. It raises a demand of novel probing signal that can ‘see through’ the degradation of 

electrodes and electrolyte, loss of Li-ions, SEI layer thickness, electrode surface phase changes, out-gassing and 

passivation layer formation due to secondary reactions. Such method certainly needs a direct measurement of 

electrochemical parameters. MFP looks promising and fits with above requirements. Table 2 gives a classification 

of these methods on the basis of five major aspects. 

 

 

 

 

http://www.ijesrt.com/


   ISSN: 2277-9655 

[Singh* et al., 6(7): July, 2017]   Impact Factor: 4.116 

IC™ Value: 3.00   CODEN: IJESS7 

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [33] 

Table 2. Comparison of Li-ion battery ageing estimation methods/models performances on five prime aspects. 

Methods, models Adaptation Accuracy 
Real-time 

performance 

Run without 

data 

Prediction 

Empirical and 

analytical 

modelling 

Very poor Good Poor Poor Poor 

Equivalent circuit 

modelling 
Very poor Fair Good Good 

Fair 

Statistical 

modelling 
Fair Good Good Very poor 

Good 

Direct 

measurement 

methods 

Excellent Excellent poor Excellent poor 

Electrochemical 

modelling 
Very poor Excellent Fair Fair 

Fair 

Invasive methods Very poor Excellent Very Poor Excellent Good 

VI. CONCLUSION 
Since Li-ion batteries are the common and leading energy sources for green energy vehicles especially used for 

EVs, their performance highly effects the performance and economical proposition for EVs and HEVs. Hence, 

the battery manufacturers are looking for a breakthrough in both battery technology, and battery diagnosis 

approaches. Chemical processes in the battery are highly dependent on the operating conditions. Therefore, the 

degradation of a battery may differ in different operating environments. As a result, it is critically essential to have 

a precise estimation of the battery health and the time window where battery works properly. In this review paper, 

we have presented novel research and development in health estimation and deep ageing diagnosis on Li-ion 

batteries. Different methods, models, algorithms and techniques were discussed for battery ageing estimation. We 

hope that this paper will be helpful for engineers in need of a general overview of different diagnosis tools; towards 

getting a wider perspective on both challenges and progress of Li-ion battery health monitoring. The system 

engineers working for green energy vehicles may also gain a broad knowledge from this review article as 

following: 

• A quick glance at the ageing mechanism of Li-ion battery and its causes 

• Use of mathematical modelling in BMS making it smarter to monitor battery ageing 

• Compare the various ageing monitoring techniques to re-design the existing BMS 
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